
A comparison of AES candidates on the
Alpha 21264

 Richard Weiss Nathan Binkert
VSSAD Labs Computer Science Dept
Compaq Computer Corp, University of Michigan
334 South St Ann Arbor, MI
Shrewsbury, MA 01545 binkertn@umich.edu
Richard.Weiss@Compaq.com

ABSTRACT
We compare the five candidates for the Advanced Encryption Standard based on
their performance on the Alpha 21264, a 64-bit superscalar processor. There are
several new features of the 21264 that have a significant impact on
encryption/decryption speed. The main ones are greater potential for
instruction-level parallelism (ILP) and larger level 1 cache. The ILP comes
from the fact that the 21264 can issue four integer instructions per cycle. We
envision that for high-performance servers, there will be multiple streams of
data for encryption or decryption. The type of parallelism that we consider in
this paper is the encryption of multiple, independent blocks interleaved in the
same code loop running on the same processor. This benefits some algorithms
more than others. Rijndael and Twofish turn out to be the fastest for a single
block at a time, but RC6 is potentially the fastest when processing two blocks
at a time. The reason for this is that out-of-order execution together with an
issue width of four can be used to hide the latency of integer multiplies.

Introduction
The new AES algorithms will be used on a wide range of CPU's. The Alpha
21264 is a good representative of a 64-bit RISC architecture. Its features
include a 64K two-way set associative level-1 cache, the capability to
issue 4 integer instructions each cycle, and out-of-order execution. Since
the Alpha is most likely to be used in servers, it will probably be used
for encrypting or decrypting multiple streams of data simultaneously. This can
be done on multiple processors, but it is also relevant to look at the
efficiency of processing more than one block simultaneously on each processor,
thus increasing the throughput of the system. In the remainder of this paper,
we will use the term multiple stream or multistream to refer to more than one
block on the same processor. Most of the studies so far have looked at single
stream performance, where latency is the dominant factor. In order to get
optimal multistream performance, it will be necessary to harness the full
bandwidth of the processor. The five candidate AES algorithms have different
computational requirements, and therefore have different behavior with respect
to multistream than single stream.

We illustrate the multiple stream scenario with an example, so that there is no
ambiguity. Consider the following assembly language fragment from a loop for an

imaginary processor that can issue two instructions per cycle, at most one of
which can be a multiply:

loop:
1. Load S[0] # load key
2. T = Mull A*A

3. Load S[1] # load key
4. U = Mull B*B

5. C = Shift_right T
6. D = Shift_left T

7. E = Shift_right U
8. F = Shift_left U

9. C = C Or D
10. E = E Or F

11. B = C Add S[0]
12. A = E Add S[1]

13. Br loop

The processor will execute two instructions per cycle except for the branch. If
the latency of each instruction were one cycle, then the whole code would take
seven cycles. However, if the latency of a multiply is seven cycles and at most
one can be issued in a given cycle, then there is a five cycle stall after the
fourth instruction. Therefore, the execution time increases to 12. Now
consider what we can do for two independent blocks of data:

loop:
Load S1[0] # load key1
T1 = Mull A1*A1

Load S1[1] # load key1
U1 = Mull B1*B1

C2 = Shift_right T2
D2 = Shift_left T2

E2 = Shift_right U2
F2 = Shift_left U2

C2 = C2 Or D2
E2 = E2 Or F2

B2 = C2 Add S2[0]
A2 = E2 Add S2[1]

Load S2[0] # load key2
T2 = Mull A2*A2

Load S2[1] # load key2
U2 = Mull B2*B2

C1 = Shift_right T1

D1 = Shift_left T1

E1 = Shift_right U1
F1 = Shift_left U1

C1 = C1 Or D1
E1 = E1 Or F1

B1 = C1 Add S1[0]
A1 = E1 Add S1[1]

Br loop

The combined loop can process two blocks in only 13 cycles. The processing of
the two blocks can be overlapped in such a way that while the shift operations
for one block are waiting for the multiplies to complete, operations on the
other block can proceed. For the 21264, the latency for a multiply is actually
seven, and the latency of a load is three or more, depending on whether or not
the value is in the D-cache. The 21264 can issue up to four integer
instructions in one cycle, at most two of which can be loads. The out-of-order
processing capability is not actually used if the compiler schedules the
instructions to take into account the latency. It should be noted that future
generations of Alpha processors will have simultaneous multithreading (SMT),
which will eliminate the necessity of the programmer/compiler merging two
streams of data in one instruction stream.

The key to taking advantage of the full issue width of the Alpha is recognizing
when a program has a low number of instructions per cycle (ipc). In the above
example, this was caused by the long latency of the multiplies, but there may be
other cases where this happens. For example, in the implementation of Serpent
that we used, there were long chains of dependent logical operations, which
resulted in an ipc of slightly less than two. Thus, Serpent can achieve a
speedup of almost two by processing two streams. RC6 is similar to the example
above in that the multiplies introduce latency, which reduces the ipc to a level
for which processing two streams works well. On the other hand, Rijndael,
Twofish and Mars do not lend themselves to this approach. They can be coded
efficiently for single stream so that the table lookups can be overlapped with
the other computation and the ipc is well over two. It should be noted that an
ipc of greater than two does not preclude multistream processing, but the gains
are likely to be small. Also, it is important to use an optimized version of
the code, otherwise a low ipc will only reflect the inefficiency of the
implementation rather than the potential for multistream parallelism. For this
reason, we examine assembly language implementations in addition to the C
versions.

One of the architectural features that is missing from Alpha is the 32-bit
rotate. This requires several instructions to emulate. A fixed rotation
requires two shifts an “and” and an “or”. These can be executed in two parallel
chains and in the absence of other parallelism they have an ipc of two.

The next section presents an analysis of each algorithm in terms of ipc for a C
implementation and for an assembly code implementation.

Analysis of Algorithms
Our goal is to get a quick estimate of the performance for multistream data. We
do this by checking the timings for the Gladman C implementations of the five
candidate algorithms for single stream data and estimating the ipc. Then in some

cases, we also look at assembly language implementations to see if the ipc could
be increased. While a high ipc will rule out a gain from multistream, a low ipc
does not guarantee one. A range of techniques was used from a complete
implementation in assembly language in the case of Rijndael, to coding a single
round in assembly language for Rc6 and Twofish, to a data dependency anlysis for
Mars and Serpent. The data dependency analysis together with instruction
latency was used to estimate optimal times for the last two algorithms. In the
one case where we did an assembly language implementation, the time for this was
compared with our estimate. Finally, we estimated the gains for multiple stream
implementations.

Mars
The Mars algorithm has three phases: simple arithmetic and logical operations,
table lookup and rotations. The table lookup, which is mixed with some fixed
rotations has a four-fold parallelism. This seems to be the reason for a high
ipc, and therefore little gain from multistream. Since the Alpha does not have
a 32-bit rotate, this increases the number of instructions. For this reason,
it is both one of the fastest algorithms on a Pentium Pro but one of the slowest
on the 21264.

RC6
RC6 turns out to be a lot more efficient on the Alpha 21264 than expected
from observing the number of cycles for a single block of data. For single
stream performance, each round when coded in assembly language, takes 18 cycles
and there are 20 rounds. If we allow 20 cycles for setup, this gives a total of
380 cycles per block. This is amazingly close to the current reported figure of
382 cycles per block for the optimized C version. A single round of encryption
for two independent blocks of data simultaneously was also coded in assembly
language for an estimated 21 cycles, which is less than 11 cycles/block. For 20
rounds, this would be 210 cycles/block plus the time for setup and storing
results. This is as fast as Rijndael, and is potentially more consistent since
it uses multiplication, which have a fixed latency, and does not depend on table
lookups which could suffer occasional cache misses. In addition, if the
algorithm were used with a word size of 64, this could potentially double the
throughput, since the 64-bit versions of the operations multiply, xor, add and
rotate are as fast or faster than the 32-bit versions on Alpha processors.

Rijndael
The simplicity of the Rijndael algorithm makes it easy to analyze. We were able
to produce an efficient implementation in assembly code together with timing
results. The major computational cost for this algorithm is accessing the look-
up tables. This can be done in three instructions: extract byte, add to base
address, and load the value. For Alpha, this is relatively fast, since the
tables fit in the level-one cache. Ideally, one round of Rijndael could be done
in 18 cycles: however, in practice, this requires tuning the code to eliminate
I-cache misses, D-cache misses, etc. What we observed was that the code took
246 cycles/block when executed repeatedly. This is about 23 cycles per round.
This was the fastest algorithm we have observed for 128-bit key length. However,
since the number of rounds for Rijndael depends on the key length, this is not
the fastest for all applications.

We expect the Rijndael algorithm to scale well with future processors since
the makeup of the code is such that one quarter of the instructions are loads.
The Alpha 21264 can issue four integer instructions per cycle, and there is a
four-fold parallelism from the four S-boxes. However, this gives it a high ipc
and means that there is little gain from multistreaming. A single round of

Rijndael takes 18 cycles. The setup and exit code adds another 30 cycles to the
total to give approximately 210 cycles per block.

Serpent
Based on the C-code from Brian Gladman, this algorithm is the slowest. However,
it speeds up very well with multistreaming. The S-boxes are implemented by
sequences of bit-parallel logical operations. Due to data dependencies in this
code, the ipc is slightly less than two. The technique for estimating the two
stream performance was to modify the C code. Each round is composed of three
macros: an “xor” with the key, an S-box computation, and a linear transform.
The processing of the two streams was interleaved by repeating each macro for
the first stream with the identical macro for the second stream. The compiler
was able further mix the instructions to eliminate stalls. Nevertheless,
Serpent remains one of the slower algorithms because of the large number of
rounds and the large number of instructions per round. It should be noted that
most of the operations in Serpent operate on bits in parallel. It should be
possible to process two blocks of 32-bit words by using the full 64-bit data
path. Namely, one block would use the upper 32 bits, and the other block would
use the lower bits. There would be an extra “and” for the rotates as well as
packing the two words together, but the speedup could be close to 2x.

Twofish
Based on an assembly language coding of a single round, twofish performs
approximately as well as Rijndael on both the 21164 and the 21264 for 128-bit
key length. Since Twofish does not require more rounds for larger key lengths,
its relative performance would be better for longer keys. It can potentially do
eight S-box lookups in parallel for each round. This gives it a high ipc and
small gain for multistreaming.

Timing Results

Table 1 shows the results from optimized C-code for the Alpha 21164 and 21264
processing one block at a time. The 21164 can issue two integer instructions
per cycle and the 21264 can issue four. The results are similar to those
published by Granboulan [Gran]. Our timings were all obtained by running each of
the algorithms for key setup, encryption and decryption on a single stream of
data, one block at a time. The C-versions of these algorithms are the ones
published by Gladman [Glad1]. We ported them to Alpha by using the native cycle
count register and modifying the declarations to eliminate alignment errors in
the code. The basic idea is to time the execution of the encryption
(decryption) code running once, then time it running twice. The minimum times
over a large number of iterations are subtracted to measure the time to execute
the code without the startup costs. In addition, the encryption (decryption)
code is run once at the beginning to warm up the caches.

In order to relate our assembly code estimates to the C implementations, we
linked our assembly version of Rijndael to the Gladman harness and observed an
encryption time of 280 cycles/block. The assembly code when executed for a
large number of iterations took a minimum of 246 cycles/block. This suggests
that the C++ overhead for calling some of the C or assembly functions could be
significant.

In Table 2, we have estimated timing results for assembly language
implementations for some of the algorithms for single stream. Table 3 shows the
estimated timing for assembly code for processing multiple streams.

EV56 (21164) Mars RC6 Rijndael Serpent Twofish
Ours 701c 571c 439c 984c 442c
Granboulan
website

507c 559c 490c 998c 490c

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Ours 515c 428c 293c 854c 316c
Granboulan
website

450c 382c 285c 855c 315c

Table 1. Timing comparison in cycles/block for C code.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Assembly code 375c 360c 210c 570c 255c

Table 2. Estimated timing for assembly code in cycles/block.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Assembly code 375c 210c 210c 506c 255c

Table 3. Estimated time for assembly code encrypting two blocks
simultaneously. Times are in cycles/block.

Conclusions

RC6 has the most potential for parallelism when multiple streams are processed
on the same processor simultaneously in a single thread. One reason for this is
that it relies heavily on multiplication, which itself has a large degree of
parallelism for the Alpha processors. 32-bit multiplies are inherently parallel
because they operate on four bytes at the same time. Using 64-bit multiplication
would afford even more parallelism. The 21264 can issue one multiply every
cycle. The latency of seven cycles does not limit bandwidth for this algorithm
in multistream mode. An S-box lookup requires three instructions, and only
operates on one byte at a time. Note that while RC6 has variable 32-bit
rotations, one of the intermediate results from the fixed rotation by 5 is re-
used in the variable rotation.

Serpent also has a large gain from multistream processing because of the long
dependent chains of instructions and low ipc. However, because of the large
number of rounds and instructions per round, it still is slow.

Following RC6 are Twofish and Rijndael, which both use 8-bit table lookups and
linear transforms. Twofish has an advantage for longer keys, but Rijndael seems
the fastest for 128-bit keys. Based on an assembly language implementation of

Rijndael, there can be a significant difference between the estimated
performance and what can be readily achieved/observed by counting cycles outside
of the algorithm function call. Comparing code execution with timing
estimations can have a significant amount of error.

Since our estimates for the Alpha 21264 are based on instruction level
parallelism for processing multiple streams, similar behavior should be
observable for Itanium and other VLIW machines.

Acknowledgements.
We would like to thank Dr. Brian Gladman for publishing unified C
implementations of the five AES candidate algorithms. Also we thank Steve Root
for assembly language implementations of some of the algorithms.

References

[KA] Almquist, Kenneth. “AES Candidate performance on the Alpha 21164.
http://home.cyber.ee/helger/aes/kenneth.txt

[Glad1] Gladman, Brian. “Implementation experience with AES candidate
algorithms.” Second AES Conference, Feb, 1999.
http://jya.com/bg/gladman.pdf

[Glad2] Gladman, Brian.
http://www.btinternet.com/~brian.gladman/cryptography_technology/Aes/index.htm

[Gran] Granboulan, Louis. “AES Timings of best known implementations.”
http://www.dmi.ens.fr/~granboul/recherche/AES/timings.html

[SKW] Schneier, B., Kelsey, J., Whiting, D., et al. “Performance Comparison of
the AES Submissions.”

